Formulaire général de physique – chimie / L1

CONSTANTES ET CONVERSIONS

Valeurs des constantes usuelles

grandeur	symbole	valeur / ui	nité
Accélération de la pesanteur au niveau de la mer	g	9,81	m.s ⁻²
Célérité de la lumière dans le vide	С	2,998 x 10 ⁸	m.s ⁻¹
Permittivité du vide	ε ₀	8,85.10 ⁻¹²	m ⁻³ .kg ⁻¹ .s ⁴ .A ²
Perméabilité magnétique du vide	μ_0	4 π .10 ⁻⁷	kg.m.A ⁻² .s ⁻²
Nombre d'Avogadro	N _A	6,02 × 10 ²³	mol ⁻¹
Charge élémentaire	е	1,602 × 10 ⁻¹⁹	С
Constante de Planck	h	6,63 ×10 ⁻³⁴	J.s
Constante de Boltzmann	k _B	1,38 x 10 ⁻²³	J.K ⁻¹
Constante du gaz parfait	R	8,314	J.mol ⁻¹ .K ⁻¹
Constante de Rydberg pour H	R _H	1,096 × 10 ⁷	m ⁻¹
Energie d'ionisation de l'hydrogène	I _H	13,60	eV
Masse volumique de l'eau	μ_{eau}	1000	kg.m ⁻³

Conversions d'unités

Pression	1 bar = 1 x 10 ⁵ Pa	1 atm = 101	325 Pa	760 mmHg = 1 atm
Volume	$1 \text{ cm}^3 = 1 \text{ x } (10^{-2} \text{ m})^3 = 1 \text{ x}$	10 ⁻⁶ m ³	$1 L = 1 dm^3$	= 1.10 ⁻³ m ³
Unités composées	$1 \frac{g}{cm^3} = 1 \frac{10^{-3} kg}{10^{-6} m^3} = 1 x$	$10^3 \frac{kg}{m^3}$		

- 1 -

Université Claude Bernard (JB) Lyon 1 L1 / portail PCSI 91 VIA ohiim 67 Ho sposia 66 Dy 62,500 Tableau périodique des éléments Gd 64 110 Ds 272,1463] 63 Eu 51,964 62 Sm 150,36 60 Nd 44,242 57 La La 88,9054 89 Ac D'après Wikipédia

Nicolas Reverdo

THERMODYNAMIQUE PHYSIQUE

Capacités thermiques

 $C_P = n C_P^{Mo}$

 $C_P = m C_P^{ma}$

C_p et C_v en J.K⁻¹

Capacités thermiques molaires :

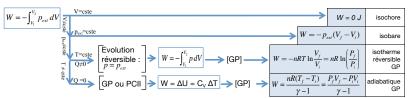
Gaz parfait					Phase condensée
	$\gamma = \frac{C_P}{C_V} ; C_P = C_V + n R$		$C_P^{Mo} = \frac{\gamma R}{\gamma - 1}$	$C_{V}^{Mo} = \frac{R}{\gamma - 1}$	$C_P \approx C_V$
GP monoatomique	γ = 5/3 = 1,67		$C_P^{Mo} = \frac{5}{2}R$	$C_V^{Mo} = \frac{3}{2}R$	notée C
GP diatomique	γ = 7/5 = 1,4	/	$C_P^{Mo} = \frac{7}{2}R$	$C_V^{Mo} = \frac{5}{2}R$	

Evolution d'un système

Premier principe	Second principe
$\Delta U = W + Q$	$\Delta S = \int_{i}^{f} \frac{\delta Q_{rev}}{T} \left[= \int_{i}^{f} \frac{\delta Q_{irr}}{T_{ext}} + S_{créée} ; S_{créée} > 0 \right]$

<u>Laplace</u> (adia. rév. GP)

 $PV^{y} = cste$ $TV^{y-1} = cste$ $P^{1-y}T^{y} = cste$


Pour le gaz parfait (GP) et les phases condensées | Phase non parfaite indilatables et incompressibles (PCII), même si V et P | (sans réaction chim non constants, sans réaction chimique :

 $\Delta U = C_V \Delta T$ et $\Delta H = C_D \Delta T$

(sans réaction chimique) : $\Delta U = \int_{T_i}^{T_f} C_V(T) dT$ à volume constant

 $\Delta H = \int_{T_i}^{T_f} C_P(T) dT$ à pression constante

Travail des forces de pression

Transfert thermique et variation d'entropie du système / évolution sans changement d'état

	Q	ΔS			
isobare (P = cste)	[Quasi-statique (P = P_{ext})] : $Q_p = \Delta H = \int_{T_i}^{T_j} C_p(T) dT$	$\Delta S = \int_{T_i}^{T_f} \frac{C_p(T)}{T} dT$			
isochore (V = cste)	$Q_{V} = \Delta U = \int_{T_{i}}^{T_{f}} C_{V}(T) dT$	$\Delta S = \int_{\tau_i}^{\tau_f} \frac{C_V(T)}{T} dT$			
isotherme (T = cste)	[GP]: $\Delta U = 0 \Rightarrow Q = -W$ $Q_{rev} = -W_{rev} = nRT \ln \frac{V_f}{V_i}$	[GP]: $\Delta S = nR \int_{V_i}^{V_f} \frac{dV}{V} = nR \ln \left(\frac{V_f}{V_i} \right) = -nR \ln \left(\frac{P_f}{P_i} \right)$			
adiabatique	Q = 0	$\Delta S = 0$ si réversible $\Delta S = S_{créée} > 0$ si irréversible			

- 3 -

Université Claude Bernard (vig Lyon 1

L1 / portail PCSI

Transfert thermique et variation d'entropie du système / changement d'état (CE)

À pression constante

[Quasi-statique (P = P_{ext})] : $Q_p = n \cdot \Delta_{CE} H$

À pression et température constantes :

 $\Delta_{CE}S = \frac{n \cdot \Delta_{CE}H}{T_{CE}}$

avec ∆_{CE}H en J.mol⁻¹

Conduction et convection thermique

Flux thermique (puissance thermique)	$\Phi = \frac{\delta Q}{dt}$

Densité de flux thermique q : $\Phi = \int_{S} \vec{q} \cdot \overrightarrow{dS}$		$\cdot \overrightarrow{dS}$	CP': surface plane séparant 2 milieux de températures différentes :	$q = \frac{\Phi}{S}$
Loi de Fourier : $\vec{q} = -\lambda \ \vec{\nabla} T$			CP*: à une dimension :	$q = -\lambda \frac{dT}{dx}$
Coefficient de convection thermique au voisina		u voisina	age d'une paroi (α)	$q = \alpha \Delta T$
Résistance thermique	$R = \left \frac{\Delta T}{\Phi} \right $	CP*: c	dans un matériau à une dimension :	$R = \frac{e}{\lambda S}$
resistance trieffindre $V = \Phi $		CP*:s	surface plane séparant 2 milieux :	$R = \frac{1}{\alpha S}$

Machines cycliques dithermes

Premier principe sur un cycle :	$W + Q_C + Q_F = 0$
Second principe sur un cycle (inégalité de Clausius-Carnot) :	$\frac{Q_C}{T_C} + \frac{Q_F}{T_F} \le 0$
Efficacité thermodynamique :	$ \eta = \frac{\text{transfert d'énergie utile}}{\text{transfert d'énergie dépensé}} $

Systèmes ouverts : étude sur un volume de contrôle (VC)

Lien débit massique et débit volumique :

			CP* stationnaire
Bilan de masse		$\frac{dm_{VC}}{dt} = \sum_{\substack{entrées \\ sorties}} q_{m,i}$	$\sum_{\substack{entrées\\ sorties}} q_{m,i} = 0$
Bilan d'énergie	$\frac{dE_{VC}}{dt} = \frac{\delta W_{\neq p}}{dt} + \frac{\delta Q}{dt} + \frac{\delta Q}$	$\sum_{\substack{\text{entrées} \\ \text{sorties}}} q_{m,i} \Big[h_i + e_{c,j} + e_{p,i} \Big]$	$\frac{\delta W_{xp}}{dt} + \frac{\delta Q}{dt} + \sum_{\substack{\text{entrées} \\ \text{sorties}}} q_{m,i} \left[h_i + e_{c,i} + e_{p,i} \right] = 0$
	les grandeurs minuscules sont massiques convention thermo classique (entrée > 0, sortie < 0)		

 $q_m = \rho q_v$

- 4 - Nicolas Reverdy 2

[:] CP = cas particulier

L1 / portail PCSI

Сніміє

Thermochimie

<u>Réactions</u> :	Formation:	$A_{(std)} + B_{(std)} \rightarrow 1 AB_{(std)}$	
	Combustion :	1 $X_{(std)} +O_{2(g)} \rightarrowCO_2$	$I_{(g)} + H_2 0_{(g)} + N_{2(g)} + CI_{2(g)}$
	Energie de dissociation :	$AB_{(q)} \rightarrow A_{(q)} + B_{(q)}$	$(D = \Delta_r H)$

 v_i coeff. stæchiométrique : $v_i > 0$ pour les produits, $v_i < 0$ pour les réactifs

• Evolution d'un système chimique à P et T constantes :

	S	$\Delta S = \int_0^{x_f} \Delta_r S(x) dx$	avec	$\Delta_r S = \sum \nu_i \ S_i$
	U	$\Delta U = \Delta_r U \cdot x_f$	avec	$\Delta_r U = \Delta_r H - RT \sum_i v_i(gaz)$
$\Delta H = \Delta U + RT \sum \Delta n(gaz) \qquad \qquad \Delta_r H = \Delta_r U + RT \sum v_i(gaz)$		$\Delta H = \Delta_r H \cdot x_f$	avec	$\Delta_r H = \sum v_i \Delta_f H$
	Н	$\Delta H = \Delta U + RT \sum \Delta n(gaz)$		$\Delta_r H = \Delta_r U + RT \sum_i v_i(gaz)$

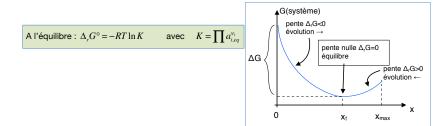
			$\Delta_r G = \sum_i V_i \ \Delta_f G$
G	$\Delta G = \int_{0}^{x_f} \Delta_r G(x) dx$	avec	$\Delta_r G = \Delta_r H - T \cdot \Delta_r S$
	J ₀ , , ,		$\Delta_r G = \Delta_r G^\circ + RT \ln Q \text{avec} Q = \prod a_i^{v_i}$
			(cas général, donc hors équilibre)

$$\Delta_r H(T_2) = \Delta_r H(T_1) + \int_{T_1}^{T_2} \Delta_r C_p dT \qquad \Delta_r S(T_2) = \Delta_r S(T_1) + \int_{T_1}^{T_2} \frac{\Delta_r C_p}{T} dT \qquad \text{avec} \qquad \Delta_r C_p = \sum_i V_i C_{p_i}$$

Si changement d'état, faire un cycle.

Acides-bases

• K_A associé à la réaction : $AH_{(aq)} + H_2O_{(i)} \rightleftarrows A^-_{(aq)} + H_3O^+_{(aq)}$


pH général	pH acide fort	pH acide faible
pH = -log [H ₃ O ⁺ _(aq)]	pH = -log(C)	$pH = pK_A + \log \frac{\left[A_{(aq)}^{-}\right]_{\varepsilon}}{\left[AH_{(aq)}\right]_{\varepsilon}}$

• Dans toutes les solutions aqueuses, $[HO^{-}]_{eq}[H_{3}O^{+}]_{eq} = K_{e} = 10^{-14}$

Université Claude Bernard (Ge) Lyon 1

L1 / portail PCSI

Equilibres chimiques

Activités :

Solide ou liquide seul dans sa phase / Solvant	a = 1	
Soluté	$a_i = \frac{[X_i]}{C^{\circ}}$	avec C° = 1 mol.L ⁻¹
Gaz parfait	$a_i = \frac{P_i}{P^{\circ}}$	avec $P_i = x_i p_{tot}$ et $x_i = \frac{n_i}{n_{tot}}$

• Relation de Van't Hoff : $\frac{d \ln(K)}{dT} = \frac{\Delta_r H^{\circ}}{RT^2}$

Solubilité

 K_s associé à la réaction : $AB_{(s)} \stackrel{\sim}{=} A^+_{(ac)} + B^-_{(ac)}$ Si $Q < K_s$ pas de précipitation $Si Q_1 > K_s$ alors précipitation jusqu'à obtenir $Q = K_s$

Electrochimie

Pour un couple ox/red : $E = E^{\circ} + \frac{RT}{nF} \ln \frac{[ox]}{[red]} = E^{\circ} + \frac{0,059}{n} \log \frac{[ox]}{[red]}$ Système réactionnel à l'équilibre : $\Delta E = 0 = \Delta E^{\circ} - \frac{RT}{nF} \ln K \qquad \text{ou} \qquad \frac{\log(K) = \frac{n\Delta E^{\circ}}{0,059}}{\log(K)}$