

SOLUTIONS TAMPONS

• Une solution tampon contient un acide faible et sa base conjuguée, la seule réaction possible est : $A^-_{(aq)} + AH_{(aq)} \rightleftharpoons AH_{(aq)} + A^-_{(aq)}$

Cette réaction ne change pas les quantités de l'acide et de la base présentes (introduites). La définition du K_A permet d'écrire :

$$pH = pK_A + \log \frac{\left[A^-\right]}{\left[AH\right]}$$

Ajout d'un peu d'acide fort : une partie de la base faible A
est consommée selon la réaction totale :

A-(aq) +	H ₃ O ⁺ (aq)	→ AH _(aq) +	H ₂ O	réaction totale donc $\xi_{max} = C$
C ₀	С	C ₁	Solvant	
C_0 - ξ_{max} = C_0 - C	0	$C_1 + \xi_{max} = C_1 + C$		

Attention
$$C_0 = \frac{\left[A^-\right]_{init} V}{V_{total}}$$
 , de même pour C et C₁.

On obtient
$$pH = pK_A + \log \frac{C_0 - C}{C_1 + C}$$

Ajout d'une base forte : le principe est le même et on obtient : $pH = pK_A + \log \frac{C_0 + C}{C_1 - C}$